
Suthers, D. D., Fusco, J., Schank, P., Chu, K.-H., & Schlager, M. (2013). Discovery of community structures in a heterogeneous professional 
online network.  Proceedings of the Hawaii International Conference on the System Sciences (HICSS-46), January 7-10, 2013, 
Grand Wailea, Maui, Hawaiʻi (CD-ROM). New Brunswick: Institute of Electrical and Electronics Engineers, Inc. (IEEE). 

 

Discovery of Community Structures in a Heterogeneous Professional Online 
Network 

 
Dan Suthers 

University of Hawai`i at Manoa 
suthers@hawaii.edu 

Judi Fusco 
SRI International 

judith.fusco@sri.com 

Patricia Schank 
SRI International 

patricia.schank@sri.com 
   

Kar-Hai Chu 
University of Southern California  

karhai.chu@usc.edu 

Mark Schlager 
Samsung Information Systems America 

m.schlager@sisa.samsung.com 
 

 
Abstract 

Socio-technical networks that are heterogeneous 
in composition of actors and the media through which 
they interact are becoming common, but opportunities 
to study the emergent community structure of such 
networks are rare. We report a study of an 
international online network of educators involved in 
many forms of professional development and peer 
support, including sponsored and volunteer-driven 
activities taking place in both synchronous and 
asynchronous media, with participants from diverse 
career stages and occupations in education. A 
modularity-partitioning algorithm was applied to a 
directed, weighted, multimodal graph that represents 
associations between actors and the artifacts (chats, 
discussions and files) through which they interact. This 
analysis simultaneously detects cohesive subgroups of 
actors and artifacts, providing rich information about 
how communities are technologically embedded. 
Researchers deeply familiar with the network validated 
the interpretability of the partitions as corresponding 
to known activities, while also identifying new findings. 
The paper describes this interpretative validation, 
summarizes findings concerning the distribution and 
nature of communities and groups found within the 
larger heterogeneous network, and discusses open 
research questions and implications for practitioners.  

1. Introduction  

Many aspects of our social, occupational, and 
business lives are becoming increasingly embedded in 
“online” settings via Internet and mobile technologies 
[6, 14, 18, 25]. These environments can be 
heterogeneous along many dimensions, including 
participant characteristics, their purposes in 
participating, the available media affordances for 
interacting, and organized versus organic activities. 
Although heterogeneous networks are becoming quite 

common, few opportunities exist to rigorously study 
them due to increasing data restrictions: in addition to 
privacy concerns, data is increasingly seen as a 
strategic asset not to be disclosed to outsiders such as 
researchers.  

Practitioners and researchers have been creating 
and studying online networks for more than two 
decades [21, 18, 28] showing the rich networks of 
support and high quality of dialogue people can 
achieve online. We know that relationships develop 
online, but in a complex online environment, many 
different means of interacting are available (e.g., text 
chat, discussion boards, voice chat, video chat, 
blogging, and tagging and sharing media) and there are 
qualitative differences between these types of online 
interactions [11, 14].  Such accounts have shown what 
is attainable in particular contexts, but we are still 
unable to rigorously measure their value, much less 
predict or guide results reliably or at scale [19]. To 
realize the promise of online networks, we must 
employ a new generation of methods that bridge 
multiple research traditions and types of data, and 
apply these methods to give leaders and members of 
these networks more insight to what they are 
accomplishing online.  

This paper reports findings from an ongoing 
analysis of one large-scale heterogeneous network and 
our attempts to answer these questions. For nearly two 
decades, co-authors of this paper have supported SRI 
International’s Tapped In® (tappedin.org), an 
international online network of educators involved in 
diverse forms of informal and formal professional 
development and peer support [9, 20]. Development of 
Tapped In was motivated by the desire to understand 
how to initiate and manage large heterogeneous 
communities of educators, how they evolve, and the 
benefits that participants and sponsors derive from 
their involvement.  

This network includes activities that are sponsored 
by formal organizations (e.g., universities, school 
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districts, and nonprofits) mixed with volunteer driven 
and other unsponsored activities, in both synchronous 
and asynchronous media, with participants from across 
all career stages and diverse occupations related to 
education. Thus it provides a valuable opportunity to 
develop and test hypotheses, tools, and techniques for 
understanding heterogeneous networks. Cumulatively, 
Tapped In has hosted the content and activities of more 
than 150,000 education professionals (over 20,000 per 
year in our study period) in thousands of user-created 
spaces that contain threaded discussions, shared files 
and URLs, text chats, an event calendar, and other 
tools to support collaborative work. Over its history, 
more than 50 organizations, including education 
agencies and institutions of higher education, have 
consulted with Tapped In staff and became “tenants” in 
the system to meet the needs of students and faculty 
with online courses, workshops, seminars, mentoring 
programs, and other collaborative activities. While 
these organizations typically set up private spaces for 
people affiliated with them, there were also 
approximately 40-60 public activities per month 
designed by Tapped In members and open to anyone in 
the community (including tenant members). Volunteers 
drive the majority of Tapped In community-wide 
activity [9]. Extensive data collection capabilities 
underlying the system captured the activity of all 
members and groups including chat data, discussion 
board interactions, and file sharing. We selected a 
period of peak usage that occurred from September 
2005 through May 2007 for analysis in this study. 

Because Tapped In is populated with members of 
multiple tenant organizations as well as unaffiliated 
members, it is best seen as a network of education 
professionals rather than a single “community.” 
Members may move freely between most forms of 
participation. The question of what communities (or 
other types of groups) exist in this network is a matter 
for empirical investigation. We approach this question 
in terms of the artifact-mediated associations found 
between members. In the present study, associations 
between actors and the artifacts (chat rooms, 
discussion forums, and files) through which they 
interact were used to detect cohesive subgroups of 
actors and artifacts, providing richer information than 
approaches that operate on networks of actors alone. 
We examined sociometric properties of these groups in 
relation to their size and classifications as unsponsored 
or sponsored by network tenant organizations, to 
determine whether there are any systematic variations 
in how groups of different sizes or different levels of 
sponsorship operate. Then, researchers deeply familiar 
with the network validated the interpretability of the 
findings in terms of known community or group 
activities, while also identifying new findings.  

Thus, the study addresses instrumental and 
primary research questions, respectively: Are clusters 
of actors and artifacts found through graph-theoretic 
methods interpretable by humans familiar with Tapped 
In? If so, what do we learn about the structure of this 
heterogeneous network by analyzing detected clusters? 
The remainder of the paper begins by describing the 
method, as it offers a unique combination of existing 
representations and algorithms for social network 
analysis. Then the distribution of partitions found 
within the network as a whole is reported with respect 
to media use and sociometrics, to begin to answer the 
question of what a heterogeneous socio-technical 
network looks like. The partitions are interpreted to 
simultaneously provide examples of the kinds of 
communities we found embedded within the Tapped In 
network and demonstrate that the method is valid in the 
sense of providing interpretable results. We conclude 
with implications for research and practice.   

3. Analytic Approach  

We begin by describing the representation we 
work with, followed by conversion of data sources into 
this representation and the algorithms applied to this 
representation to characterize potential community 
activity within the network. 

3.1. Associograms 
Socio-technical networks are commonly studied 

using the methods of social network analysis, using 
sociograms or sociomatrix representations of the 
presence or strength of ties between human actors, and 
graph algorithms that leverage the power of this 
representation to expose both local (ego-centric) and 
nonlocal (network) social structures [27]. Singular 
representations of a tie between two actors summarize 
yet obscure the many interactions between the actors 
on which the tie is based, as well as the media through 
which they interacted. Our method seeks to retain the 
advantages of graph computations on a summary 
representation while retaining some of this information 
about how the actors interacted.  

To do so, we use bipartite, multimodal, directed 
weighted graphs, similar to but more specific than 
affiliation networks. They are bipartite because all 
edges go strictly between actors and artifacts; and 
multimodal because the artifact nodes can be 
categorized into different kinds of mediators that they 
represent, in our case including chat rooms, discussion 
forums and files. Directed edges (arcs) indicate 
read/write relations or their analogs: an arc goes from 
an actor to an artifact if the actor has read that artifact, 
and from an artifact to an actor if the actor modified 
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the artifact (the direction indicates a form of 
dependency, the reverse direction of information flow). 
Weights on the arcs indicate the number of events that 
took place between the corresponding actor/artifact 
pair in the indicated direction. Since “affiliation 
network” is not specific enough and “bipartite 
multimodal directed weighted graph” is too long, to 
highlight their unique nature we call these graphs 
“associograms” [24]. This term is inspired by Latour’s 
[13] concept that social phenomena are “assembled” by 
dynamic networks of associations between human and 
non-human actors (“actants”).  

What is summarized as a tie in a sociogram is 
represented as a network of artifact-mediated 
associations in an associogram. For example, Figure 1 
shows an actual portion of an associogram from 
Tapped In data, representing asymmetric interaction 
between two actors, with one actor writing most of the 
files and another writing to most of the discussions. A 
sociogram consisting of a single link between actors 
would fail to capture this information. The network 
directly retains information about the distribution of 
activity across media. Network analytic methods can 
then simultaneously tell us how both human actors and 
artifacts participate in generating the larger phenomena 
of interest, such as the presence of communities of 
actors and the media through which they are 
technologically embedded [14]. Although interaction is 
not directly represented, the associogram also provides 
a bridge to the interaction level of analysis [23]: it 
allows us to retrieve activity in specific media settings.  

3.2. Data Preparation 
Tapped In data was prepared as follows. We 

parsed and filtered databases and logs of user activity 
involving files, asynchronous threaded discussion 
forums, and synchronous chat rooms. Private chats 
were excluded from our analysis, which focuses on 
observable public behavior. All student activity in the 
K-12 (student) campus was excluded, as our research 

(and human subjects permission) focuses on the 
professional community. Guest accounts were also 
filtered, as different rotating individuals use these.    

Associograms for each artifact type were 
constructed. A file node represents a single file, a 
discussion node an entire threaded discussion, and a 
chat node a chat room. A file node points to an actor if 
the actor created (uploaded) that file; an actor node 
points to a file node if the actor downloaded the file. A 
discussion node points to an actor node if the actor 
posted a message in the corresponding discussion 
forum; an actor node points to a discussion node if the 
actor loaded the discussion page. A chat room points to 
an actor if the actor posted a chat contribution in that 
chat room while someone else was present; an actor 
node points to a chat node if the actor was present in 
the room when another actor posted a chat 
contribution. Each of these arcs was weighted 
according to the number of times the events just 
described were seen. The data comprises 35,012 
actants (represented by nodes in the graph), with 
179,703 associations between them (represented by 
edges). There are 16,569,971 events included (each 
contributing a weight of 1 to some edge).  

The associograms were exported in a format 
(VNA) readable by social network analysis software. 
Attributes for the different entities and weights on arcs 
were included in the export. Associograms for all 
artifact types were merged into a master associogram 
in Gephi 0.8.1 [2], where they were visualized using 
the OpenOrd algorithm [15] and partitioned as 
discussed in the next section.  

3.3. Partitioning into Cohesive Subgroups 
We use “community” or “group” to refer to 

empirically associated actants for whom it is also 
possible to identify some shared activity or purpose. 
This sense of “community” is much looser than the 
traditional gemeinschaft [26], and does not make 
claims about participant’s own identities [7], but a 
more inclusive definition is appropriate for networked 
society [6, 29]. We use graph theoretic terms (e.g., 
“partition”) when discussing algorithmic results that 
are candidates for interpretation as a particular kind of 
cohesive subgroup, and reserve “community” for when 
we are entering into the realm of such interpretation.    

In the network analysis literature, “community 
detection” refers to finding subgraphs of mutually 
associated vertices under graph-theoretic definitions 
rather than to the sociological concept. A good graph-
theoretic definition should capture the intuition that 
individuals in a sociological community are more 
closely associated with each other than they are with 
individuals outside of their community. Algorithms 
based on the modularity metric are widely used in the 

 
Figure 1. An Associogram. Actors represented by 
nodes on the right have read and written to the files 
and discussions represented by differently colored 
nodes on the left. 
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literature for this purpose. The modularity metric 
compares the density of weighted links inside (non-
overlapping) partitions of vertices to weighted links 
expected in a random graph, to find highly modular 
partitions. Finding the best possible partition under a 
modularity metric is computationally hard (impractical 
to compute on large networks), but Gephi includes a 
fast algorithm by Blondel et al. [3] that has been shown 
to give good approximations. We chose to use this 
algorithm because the modularity metric is well 
known, and a fast implementation that can handle our 
large network is available.  

4. Characterizing the Network   

4.1. Partitions Obtained 
The modularity-partitioning algorithm identified 

234 partitions with a modularity of 0.828 (the 
maximum is 1; this value indicates strong clustering). 
We analyzed three groups of these partitions. First, our 
complete analysis (sociometrics and human 
interpretation) was applied to the top 19 partitions, 
those that contain at least 1% of the actant nodes 
(ranging from 344 to 11252 nodes and 644 to 36949 
edges). Together, the top 19 partitions contain about 
75% of the nodes. Second, full sociometric statistics 
were also computed for all the remaining partitions of 
size at least 0.1% of the actants (86 partitions). Third, 
21 partitions were sampled from the 215 partitions not 
in the top 19, by taking every 10th partition, and 
sociometrics and human interpretation were undertaken 
for all of these partitions. Sampling was done because 
we wanted to characterize the changes in partitions as 
they get smaller in the “long tail”, but it was infeasible 
to conduct time-consuming human interpretations of 
all of the 234 partitions, and many were too small to be 
of interest. Sampling was done at regular intervals 
rather than randomly because we wanted to 
characterize the size distribution and associated 
changes in other variables. The sampled partitions each 
contain less than 1% of the actant nodes (ranging from 
2 to 303 nodes and 2 to 2070 edges). In summary, 
sociometrics and human interpretation were applied to 
a total of 40 partitions, 19 from the top 1% and 21 from 
the bottom 99%, and sociometrics were applied to all 
of the top 86 partitions (down to 0.1% in size).  

Figure 2 shows an OpenOrd visualization of the 
partitions obtained. Each partition is given a different 
color, and structures corresponding to major candidate 
communities are visible. Generally the visualization is 
not interpreted in this form, but rather filters are 
applied to view partitions independently of each other, 
and local structures are examined by zooming in to see 
how actors and artifacts are relating to each other.  

Table 1 shows the top 19 partitions found, with 
selected statistics (see table for legend; further 
explanation provided below).  

4.2. Distribution of size of partitions  
Graphing the size distribution of partitions reveals 

an exponential decay, with a large initial partition 
followed by decreasing sized partitions and a long tail 
of small partitions. Figure 3 graphs the number of 
actants (actors and artifacts) and of actors alone for the 
largest 86 partitions: the tail is much longer for the full 
set of 234. The distribution of actors roughly follows 
that of the total actants. As discussed later in this paper 
and in [24], the largest partition is centered around the 
very-high degree Tapped In Reception chat room 
(where most participants enter when they log in), the 
help desk volunteers who greet newcomers and direct 
them to their destinations, and the closely associated 

 
Figure 2. OpenOrd visualization of partitions 
found in combined associogram for actors 
associated via chats, discussions and files. 

 

 
Figure 3. Distribution of size of partitions. 
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set of public rooms within which public After School 
Online (ASO) events took place. We omit this partition 
from a few of our graphs in order to visualize finer 
structures in the other partitions. At the other extreme, 
86 partitions consist of only 0.01% of the artifacts, 
many with one actor and one or two artifacts at the tail. 
These are individuals who may have interacted with 
others, but are more closely associated with artifacts in 
their offices than with partitions that involve other 
actors. These small partitions also produce outliers 
when a single individual is involved with a relatively 
large number of artifacts.  

4.3. Distribution of parameters across sizes   
We wanted to see whether parameters of interest 

varied across the size of partitions––that is, do the 
characteristics of embedded cohesive subgroups 
change as they get smaller? For these analyses we used 
the sample of every 10th partition.  

Some of the parameters we examined did not vary 
in a systematic way as a function of size. Typically 
there is a lot of variation, with outliers punctuated 

throughout the size distribution. For example, Figure 4 
shows the average weighted degree, with partitions 
sorted by number of actors (shown in the x axis). This 
provides a visualization of the normalized amount of 
activity per actor, as each event in the data becomes 
one increment to the weight on an edge in the graph. 
While there is wide variability, no clear size-related 
trend can be seen. This result suggests that the extent to 
which people (and artifacts) participate does not vary 
as the size of the cohesive subgroup. Outliers shown as 
spikes in the graph will need to be explained by some 
other characteristics of the subgroup.  

We also examined weighted degree of partitions 
(Par WDeg in Table 1). This sociometric treats entire 
partitions as nodes and computes the weighted degree 
of edges crossing partitions. It provides a measure of 
how much bridging or extra-partition activity there is. 
We expected that smaller partitions would be more 
“permeable” in that participants are more likely to go 
outside of their small partition to engage in other 
activities. Figure 5 suggests that this is not the case: the 
permeability of groups corresponding to spikes in 
Figure 5 will have to be explained by other factors. 

ID 
% 
Actant Actors Discs Files Chats 

Avg 
Wdeg 

Avg 
Path 

Par 
Wdeg CommType Activity Type 

0 32.1% 7659 1787 838 968 359.6 3.07 816387 
Help Desk & 
Unsponsored orientation, ASOs 

4 5.9% 660 1016 250 131 219.9 3.90 37223 Tenant groups, PD 
15 4.7% 535 869 176 66 437.2 3.82 49945 Unsponsored groups, PD 
66 3.8% 169 1011 105 49 139.5 4.78 10519 Unsponsored classes 
76 3.2% 584 452 59 18 74.5 4.82 25392 Unsponsored classes 
14 3.0% 604 187 190 64 227.6 5.94 241533 Tenant classes, experiment 
52 2.7% 330 431 166 26 187.5 8.10 16254 Unsponsored groups, PD 
20 2.6% 331 273 207 89 67.9 4.55 16050 Tenant groups, PD 
33 2.4% 390 189 250 23 24.9 5.54 6270 Tenant groups, PD 

180 2.3% 443 268 85 25 44.5 6.32 16061 Unsponsored groups 
1 1.7% 59 275 240 33 229.0 3.51 1371 Tenant classes 

22 1.7% 116 85 356 20 105.9 3.73 2948 Unsponsored groups 
56 1.5% 183 227 82 35 311.3 4.20 4262 Tenant groups, PD 
12 1.3% 146 166 119 39 172.5 5.04 23133 Unsponsored classes 
75 1.3% 148 195 92 23 105.3 5.08 17019 Tenant classes, PD 
13 1.3% 236 44 61 109 6387.5 3.91 323835 Tenant groups, classes 
54 1.0% 174 135 25 29 282.7 4.16 52110 Unsponsored groups, PD 
38 1.0% 153 51 77 80 493.6 3.64 108829 Unsponsored classes 

176 1.0% 236 43 50 15 54.6 2.95 3243 Unsponsored classes  

           

 
ID = modularity class ID from Gephi; % Actant = percentage of total actants in the analysis (broken down in next four columns); 
Avg Wdeg = average weighted degree of actants in the partition (a measure of activity normalized by actants); Avg Path = average 
path length between any two actants in the partition (a measure of network cohesiveness); Par Wdeg = weighted degree of the 
edges between the partition and all other partitions (a measure of level of bridging activity); ASO = After School Online; PD = 
Professional Development. 
Table 1. Top 19 partitions found, with selected compositional statistics and sociometrics. 



 

6 

(Sensible interpretations of outliers have been found, 
but page limits preclude reporting those results here.)  

However, other metrics show trends. Figure 6 
shows the number of chats, discussions, and files in 

each partition, normalized by the number of actors in 
the partition. To make details visible, this graph 
excludes the largest and three smallest partitions in the 
sample. The three smallest partitions were removed 
from the sample because they had very large figures 
for discussions that obscured the other patterns. The 
graph tells us whether the per-actor availability of each 
of these three artifact types varies across these groups 
as they change in size. There appears to be no trend for 
chats: they are used equally across all sizes. 
Discussions increase for very small groups (consistent 
with our observation that in some small groups a few 
people are sharing several discussions, while many 
dozens may share discussions in larger groups), but 
there is also much variability in the discussion/actor 
ratios for larger groups. A trend towards greater file 
associations per person in small groups is also 
discernable. We have noticed that some small groups 
operate asynchronously (files and discussions), perhaps 
because they do not have either the critical mass or the 
formal mandate for synchronous sessions.  

Finally we found some trends that are expected for 
graph-theoretic reasons. As partition size decreased, 
the density of the graph went up and the average path 
length went down. These results are expected because 
the number of potential links increases as the square of 
the graph size, while the capacity of an individual to 
form associations with large numbers of people does 
not change.  

4.4. Tenant versus Unsponsored 
The analysis discussed in the next section 

classifies partitions as being driven by paid Tenant 
organizations versus Unsponsored. Do Tenant versus 
Unsponsored activities differ from each other? To 
begin to answer this question, we compared the 8 
Tenant versus the 10 Unsponsored partitions in the top 
2-19 partitions, that is, partitions of size 1% or larger 
excluding Partition 0, as this large reception/ASO 
partition has its own unique characteristics. (The long 
tail was excluded to avoid confounding with size 
differences, with one exception below.) The number of 
human actors considered are similar: 2611 actors in the 
8 Tenant partitions versus 2886 in the 10 Unsponsored 
ones (see also Table 1), so differences are not merely 
due to different number of actors.  

The use of media is similar in the large partitions. 
Respectively for Tenant and Unsponsored: 50.5% vs 
59.6% of artifacts are discussions, 34.7% vs 29.6% are 
files, and 14.9% vs 10.8% are chats. There is a slight 
trend towards synchronous chats in the tenant groups 
and asynchronous discussions in the unsponsored 
groups. When we look instead at the sample of every 
10th partition to include the long tail of small partitions 
(again excluding partition 0), the balance shifts 

 
Figure 4. Average weighted degree of actants 
sorted by actor size of partition 
 

 
Figure 5. Weighted between-partition degree 
normalized and sorted by number of actors 
 

 
Figure 6. Artifact to Actor ratios sorted by actor 
size of partition 
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towards asynchronous media in the Unsponsored 
partitions. Respectively for Tenant and Unsponsored, 
usage is 17.0% vs 45.8% discussions, 11.6% vs 28.6% 
files, and 71.4% vs 25.6% chats. These results are 
consistent with the trends seen in Figure 6 discussed in 
the previous section, and the fact that tenant 
organizations can provide the coordination needed to 
schedule synchronous chats.  

Sociometrics show that Tenant and Unsponsored 
groups are similar, but suggest higher levels of activity 
in Tenant partitions. The average weighted degree of 
Tenant partitions is 946.65, much greater than 199.24 
in the Unsponsored ones, but since the average degrees 
are very similar, 4.76 vs 4.62, this can be attributed to 
the greater use of chats in Tenant partitions, as chats 
generate more events. Finally, the average path lengths 
in the two partitions are very similar: 4.58 Tenant vs 
4.74 Unsponsored. The primary results in both size-
related and tenant/unsponsored analyses are a shift 
towards asynchronous media as groups get smaller, 
coupled with a surprising lack of other differences 
across group sizes.  

5. Interpretation of Partitions   

We interpreted selected partitions to see whether 
they make sense as “communities” or other kinds of 
collective activity within the TI network. The 
interpretation was done by sorting actants within each 
partition by measures of importance (degree, weighted 
degree, eigenvector centrality) and determining the 
affiliations of the highly ranked actants; by examining 
network structures to detect internal structure and use 
of media; and by examining the contents of chats and 
discussions in the most active settings. We also relied 
extensively on the SRI co-authors’ knowledge and 
records (e.g., email archives) concerning activities 
during the study period.   

This analysis provides a form of validation of the 
utility of modularity partitioning of an associogram. 
One approach to validating “community detection” 
algorithms is to generate artificial networks within 
which pre-identified communities have been embedded 
using a parameter to adjust the amount of overlap [12], 
and see whether the algorithm can find them. Such 
validation has been done with the Blondel et al. 
algorithm [3], but here we address a different question. 
How do we know that the partitions created by the 
modularity-partitioning algorithm can be taken 
seriously as potential communities or groups? We do 
not know or want to assume in advance what 
communities exist within Tapped In, because this is 
part of the question we are asking. However, some of 
us have experience running the TI network and know 
who the tenants and active persons were. So our 

approach to validation is an interpretative one: we 
examine the partitions generated by the algorithm, and 
see whether we can make sense of each partition in 
terms of what we know about activities within the TI 
network. While most of the resulting partitions were 
easy to interpret and not surprising, many results were 
not predicted. However, most of the unpredicted results 
were also validated in terms of what is known about 
the community and through examining user content. 
The next section interprets the largest partitions, those 
comprised of at least 1% of the actants, and the sample 
of every 10th partition of the remainder. 

5.1. Partitions of 1% or more of the actants  
Table 1 summarizes the features of the 19 largest 

partitions. Interpretation of most of these partitions was 
straightforward. The largest partition, with 32% of the 
nodes (11252 nodes), encompasses the Tapped In 
Reception and After School Online (ASO) community. 
The TI reception room has by far the highest 
unweighted (18,809) and weighted degrees (2,511,037) 
and betweeness centrality (0.675) in the context of the 
whole network. All of the other high ranked rooms 
were dedicated to ASO events. We interpret this 
partition to be the “entry portal” of Tapped In, where 
volunteer HelpDesk staff greet “newbies”, and where 
members who primarily engaged only in ASO events 
interacted [9].  

Eight of the top partitions were centered on the 
activities of 7 unique tenants (one tenant was 
predominant in two partitions). These partitions ranged 
from 450-2057 nodes and 3185-14439 edges. During 
the time frame examined, there were 11 tenants. As the 
SRI team was working closely with tenants and knew 
they were actively encouraging participation and 
preparing supporting artifacts, we expected that tenants 
would account for a high percentage of the larger 
partitions. For each partition associated with a tenant, 
we found people, discussions, or certain group rooms 
that we expected to be in the partition, making it 
identifiable. However, sometimes a detected tenant 
partition did not contain important actants (such as a 
key actor) known to be associated with the tenant. This 
spurred us to look for another partition containing this 
actant. In one case, we identified at least 2 other 
smaller partitions associated with a large-partition 
tenant. In another case, we noted the main structures of 
a tenant organization (3 sites and the headquarters) 
within a detected partition and thought it was complete, 
but later discovered an additional, smaller partition 
also associated with the tenant. Thus, we found that 
tenant activity was not always aggregated in one 
monolithic partition, but rather distributed across 
smaller activity structures that were not visible to us 
until now.  
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While it is not surprising that unplanned spin-offs 
or facets of planned tenant activity happen, we were 
not always aware of it, and there is value in 
discovering this empirically. The discovered structures 
reflect the reality that not all members of an 
organization interact frequently, and small clusters of 
people often work closely together and somewhat 
separately from other clusters. Indeed, it can be 
inefficient for all members to be connected [17]. Future 
analysis could examine the adequacy of information 
flow between the separate cohesive subgroups of an 
organization, or across organizational boundaries [5].     

Of the remaining (non-tenant) top partitions, 5 
were online classes and 5 were online groups 
supporting teachers in professional development 
activities. The 5 online classes were all were all 
university-level classes led by Tapped In members who 
we categorize as “lone rangers”: Tapped In members 
who independently and successfully established an 
online place in Tapped In where they could work with 
students or with like-minded colleagues from their own 
institution or elsewhere. Of the online groups, 4 were 
led by a lone ranger from an organization trying to 
support teachers. The remaining group was led by a 
successful online leader and long-time Tapped In 
member who was consulting for two organizations, one 
of which was a Tapped In tenant. We see those two 
organizations and their work together in one partition 
because of this very active leader. While we expected 
to see tenants in the top partitions, we were not aware 
of how active these other non-tenant classes and 
groups were, and only learned of their extensive 
activity through the present analysis. 

5.2. Partitions of less than 1% of actants 
Next, we consider a sampling of 21 partitions from 

the 215 smaller partitions, those that each contain less 
than 1% of the nodes. These 21 small partitions 
represented a “long tail” in that they varied widely in 
their activities and purpose. The smallest 6 partitions 
were primarily individuals experimenting with artifacts 
in the system (e.g., testing out the discussion board or 
downloading a file), and contained fewer than 5 nodes, 
including both actors and media. Unlike sociograms 
consisting only of actors, associograms cluster people 
with artifacts, enabling community leaders to discover 
what people are doing even if they are not interacting 
with other people.  

The remaining 15 small partitions could be 
understood as different kinds of “groups”. These 
partitions included the following: 3 affiliated with 
tenants, 3 online classes (2 at the university level and 
one in equine science), 4 informal discussions (chat or 
threaded discussion), 1 file-sharing group for people 
who worked together face to face, 1 group of 3 people 

who downloaded the same documents but did not have 
any other interaction (so their link was strictly through 
the artifact), and 3 associated with K-12 student 
groups. (While data on K-12 students was not 
included, we can see adult interactions with 
artifacts/media clearly associated with K-12 settings in 
K-12 student group rooms.) Some of these partitions 
included actors associated with a geographical region 
(e.g., state or city), perhaps supplementing face-to-face 
meetings. Others included actors widely distributed 
across the U.S. or the world, likely using the space as 
their primary means of interaction. Not surprisingly, 
the partitions affiliated with tenants were relatively 
larger partitions, with 40, 68, and 105 nodes 
respectively. Prior to this analysis, we suspected that 
many people were using Tapped In to support activities 
with peers and students, and indeed, this sample 
revealed a wide variety of diverse activities. 

6. Discussion and Conclusions 

The analysis reported here improves on the 
analysis reported in [22] in that (a) the present analysis 
uses a new version of Gephi (0.8.1) with a corrected 
implementation of [3] to use weights for determining 
the partitions; (b) the analyses and results in section 4 
on partition distribution are entirely new; (c) the 
process by which partitions were interpreted in section 
5 differs, involving community facilitators; and (d) 
there was further data cleaning to deal with small 
problems found. Although the number of partitions 
found differed (due to (a) and (d)), it is comforting that 
the major partitions found in the two analyses are quite 
similar in their interpretations. 

The analysis explored what we could learn from 
structures detected automatically by modularity 
partitioning of associograms. We confirmed that 
human facilitators could interpret detected structures as 
meaningful. We expected (and confirmed) that tenants 
were engaged in high levels of activity, but learned that 
this activity was sometimes distributed into clusters. 
We knew that many other groups were using Tapped In 
informally, but did not have a good handle on these 
“unsponsored” groups; this analysis helped us 
understand the variety and frequency of various types 
of non-tenant-affiliated online activities.  

6.1. Implications for researchers 
As researchers, we need tools to help us 

understand what is occurring in online networks and to 
then interpret what the results mean [19]. For many 
years, without tools, our research was limited to 
studying the groups we knew––in this case, mostly the 
tenant organizations. We were aware that we did not 
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know whether the groups we were studying were 
representative of the rest of the community, but we did 
not have a way to address this problem. For the first 
time, we see the structure of this heterogeneous 
network. We found a large network consisting of the 
entry portal and public events, the “transcendent 
community” [10] within which other activity and 
groups are embedded. Sponsored activity was found as 
expected, but not always in one setting. A large range 
of unsponsored activity was also found, some 
comparable in size to the sponsored groups but also in 
a diverse long tail of smaller groups and individuals. 
Although there is more of everything in larger groups, 
it was surprising to find that per-person measures of 
activity or bridging did not vary as a function of size, 
but rather spiked in an idiosyncratic manner.  The only 
trend was a shift towards asynchronous media in 
smaller and unsponsored groups.   

The methods discussed in this paper pose the data 
in a manner that leads us to ask questions we might not 
otherwise have thought of. Much more analysis is 
needed to fully understand what was occurring.  For 
example, can sociometrics of connectedness between 
partitions potentially be employed to help detect 
partitions that are related, specifically to find more 
“parts” of a tenant organization (e.g., if a tenant has 
multiple, connected clusters)? Identifying connected 
subgroups within an organization may further our 
understanding of when and how organizations break 
into smaller groups in online activities.  

Further automated sociometric and content 
analysis tools will make this work manageable. We 
need to develop ways to more quickly understand what 
certain graph structures might indicate. Improvements 
in cohesive subgroup detection methods are also 
needed.  Most methods, such as the one we used, force 
a partition: each actor or actant can be associated with 
only one “community” However, in most natural 
systems, including the TI network, actants play roles in 
multiple settings. New algorithms for overlapping 
“community detection” are available, but some (e.g., 
[16]) do not work on bipartite graphs. We are 
evaluating the suitability of edge community [1] and 
flow compression [8] approaches for our next analysis 
of this data.  

6.2. Implications for practitioners 
Many organizations create online mentoring or 

professional development programs, or online adjuncts 
to face-to-face programs, and find they have few 
metrics to interpret or assess what is happening beyond 
basic counting or laborious analysis of the discourse 
that participants produce. Looking at frequency data 
(e.g., number of posts over time) or analyzing 
discussion postings at the end of a project occurs too 

late to do anything to make a difference. Evaluators 
and facilitators can only try again with the next cohort. 
If we can use automatically collected data to see what 
“invisible” work is occurring within and between 
online groups, we could begin to reliably identify 
patterns that lead to failure or success, both for 
individuals and entire networks. As automated analysis 
tools continue to be developed and refined, how might 
they help group leaders support, learn, and collaborate 
with one another more effectively in online 
communities [19]? In conducting the current analysis, 
we identified ways that the results of automated 
analyses might have helped us in the practice of 
supporting an online community. For example, we 
could have reached out to low-degree members 
(“newbies”) appearing in the Reception and ASO 
partition, asking whether they needed assistance 
(perhaps with automatically-generated emails, since 
this is a large partition). For people who seemed to be 
leaders (e.g., actants with high degree or centrality 
metrics), we could have reached out with individual 
emails to ask how we could better support their efforts. 
For groups that appeared to use a dominant form of 
communication (e.g., threaded discussion), we could 
have reached out to ask whether they knew about other 
tools (e.g., chat, file sharing) available in the 
environment, or wanted to learn more about how they 
might these tools. Finally, knowing the pivotal role in 
of bridges in the diffusion of information [4], we could 
have targeted dissemination of key information to 
individuals or groups where we saw evidence of 
bridging or extra-partition activity.  

We need to have tools that tell us how much 
members of online networks interact, with whom, 
concerning what, and eventually link the interactions to 
outcomes. We need this kind of information, not just in 
small slices of time for small samples of people, but 
aggregated across whole networks over extended 
periods of time. We need to look at a variety of groups, 
not just “interesting” groups, so that we can know what 
is normal and dysfunctional, as well as exceptional: 
how much online interaction it takes to make a 
difference; what the trajectory is for groups as they 
begin to work online; which people are isolated and 
why; and how to help new people or those isolated 
become more involved. This work is the beginning of 
this vision. 
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